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Abstract. 

A model for a reactive distillation column for ETBE production was devel-

oped using both a rigorous thermodynamic model (UNIFAC) and hydraulic 

constrains. The thermodynamic model included an activity coefficient approach 

for the liquid phase, UNIFAC, and ideal gas approximation for the vapor phase. 

The binary interaction parameters of UNIFAC were improved to better predict 

the equilibrium in the column. The binary interaction parameters were estimat-

ed using experimental data taken from literature. 
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1 Introduction 

Reactive distillation (RD) is an example of process intensification. Instead of per-

forming the reaction step in a reactor and the separation in a distillation column, the 

proposed RD-device consists basically of a section where the reaction takes place and 

a rectifying and/or a stripping section above/below the reactive section. There are a 

number of benefits related to this scheme, for example that products are constantly 

removed from the reaction section, increasing the conversion of reactants because the 

products are constantly extracted, and also because products are constantly withdrew, 

avoids reaching azeotropic concentrations where applicable. Energy integration is 

also achieved, especially in cases in which the reaction is exothermic, using the reac-

tion energy to evaporate the liquid phase. Thus, RD reduces capital investment and 

operational costs [1, 2]. 

ETBE has been considered to replace MTBE as a fuel oxygenate because of the for-

mer’s superior qualities as an octane enhancer. Because ETBE is less soluble in water 

than MTBE, it use as fuel additive also minimizes groundwater contamination due to 

leakage of containing underground fuel vessels. Besides, ETBE can be produced from 

renewable sources, such as bio-ethanol, cellulose, biomass or other farm products [3]. 

ETBE synthesis can be efficiently carried out through reactive distillation to achieve 
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high conversion and low capital and operating costs. The conventional process for 

ETBE synthesis basically consists of pre-treatment of the C4 hydrocarbon feed flow, 

reaction, purification, and recovery of non-reacted products [4], which renders high 

capital and operating costs. The design of RD for ETBE synthesis, requiring good 

kinetic models integrated to reliable thermodynamic predictions still requires further 

analysis and it was not thoroughly explored in literature yet.  

In this paper, the main objective is to devise adequate thermodynamic models for 

better predicting the behavior of the mixtures ETBE-ethanol-isobutene-butane, with 

the final purpose of optimizing the operation of the reactive distillation column. 

2 Model Description 

The RD unit is modeled with MESH equations (Mass, Equilibrium, Summation, 

Enthalpy) with a rigorous thermodynamic activity model for the liquid phase 

(UNIFAC) and an ideal gas approximation for the vapor phase. With data taken from 

literature, the binary interaction parameters of UNIFAC, anm, were adjusted to better 

predict the equilibrium. The predictions were made within GAMS [5] and results 

were compared with data and with results obtained from tabulated parameters [6], as 

shown in the Numerical Results section. 

3 Thermodynamic Model 

3.1 UNIFAC 

  (1) 

 –  (2) 

  (3) 

 – –  (4) 

  (5) 

  (6) 

  (7) 

  (8) 

 –  (9) 
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  (10) 

  (11) 

 – – –  (12) 

 

Where z=10. Rj and Qj are group surface area and volume contributions, respec-

tively, and am,n is a group interaction parameter [6]. υ
i
j is the number of occurrences of 

group j in molecule i. Eq. (4) is also valid for ln Γ
i
ne,d,j. 

UNIFAC and the ideal gas approximation are related to each other in the equilibri-

um calculations in each stage of the column. 

3.1.1 Parameters estimation 

 

The parameter estimation was performed within GAMS.  

In the equilibrium, the isofugacity criteria between the two phases must be satis-

fied, then 

  (13) 

Eq. (13) is calculated for each pair of experimental data x-y taken at each P
EXP

. The 

objective function is then 

 

 OF=  (14) 

After parameters are estimated, bubble point calculations are performed to predict 

the equilibrium. These calculations are also made with tabulated parameters. Then, 

standard percent relative deviation in pressure P, σP (Eq. (15)), and standard percent 

deviation in mole fraction y1, σy (Eq. (16)), are calculated to compare results. 

  (15) 

  (16) 
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4 Numerical Results 

In order to perform an optimization of the system, a correct simulation of the pro-

cess is required. For the system under study, estimation of binary interaction parame-

ters is important due to the binary azeotropes present. Data taken from literature were 

used to estimate and improve anm, thus obtaining reliable VLE predictions for all the 

components present in the system. In order to find such binary data a parameter esti-

mation problem was posed. 

Table 1 shows the interaction parameters estimated for the system. All the parame-

ters were obtained adjusting the experimental data available. Then, with these pa-

rameters, bubble point calculations are made to predict P-y. These predictions are also 

made with tabulated interaction parameters to compare. The objective function in the 

calculations for pressure and composition is the same as for the parameters estima-

tion.  

Table 1. anm UNIFAC interaction parameters for all groups present in the RD unit. 

 
CH3 CH2 C CCH2 OCH2 OH CH2CH 

CH3 0 0 0 417.71 14506.1 972.26 -439.86 

CH2 0 0 0 417.71 14506.1 972.26 -439.86 

C 0 0 0 417.71 14506.1 972.26 -439.86 

CCH2 -238.62 -238.62 -238.62 0 407.72 791.61 0 

OCH2 -327.78 -327.78 -327.78 -33.512 0 131.362 -33.512 

OH 7440.8 7440.8 7440.8 851480 379.09 0 851480 

CH2CH 17181.6 17181.6 17181.6 0 407.72 791.61 0 

Table 2. Standard percent relative deviation in pressure P, for each set of experimental data, 

calculated with results obtained from calculations with both tabulated and estimated parameters 

 σP 

ne Tabulated parameters Estimated parameters 

1 1.786 1.092 

2 1.873 0.793 

3 2.48 0.714 

4 5.234 3.444 

5 7.736 0.763 

6 5.618 1.089 

7 3.789 0.957 

 

Standard percent relative deviation in pressure P and standard percent deviation in 

mole fraction y1 were calculated with results obtained with both predicted and tabu-
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lated parameters to compare. Table 2 and 3 show that in each experience but number 

6, in σy, deviations are lower (results obtained with estimated parameters). 

 

Table 3. Standard percent deviation in mole fraction y1, for each set of experimental data, 

calculated with results obtained from calculations with both tabulated and estimated parameters 

 

 σy 

ne.i Tabulated parameters  Estimated parameters 

1.Ethanol 6.474 5.128 

2.Ethanol 8.511 4.619 

3.Ethanol 11.457 7.269 

4.Isobutene 4.889 2.103 

5.Isobutene 11.416 8.2 

6.n-butene 3.697 4.016 

7.Isobutene 3.736 2.955 

 

Figure 1. Ethanol (1) and ETBE (2) equilibrium. ▪ and ● equilibrium data for liquid and vapor 

phase, respectively [8]. ─ Prediction with calculated parameters. - - - Prediction with tabulated 

parameters. 
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Figure 2. Ethanol (1) and ETBE (2) equilibrium. ♦ and ▲ equilibrium data for liquid and vapor 

phase, respectively [8]. ─ Prediction with calculated parameters. - - - Prediction with tabulated 

parameters. 

Figure 3. Ethanol (1) and ETBE (2) equilibrium. ▪ and ● equilibrium data for liquid and vapor 

phase, respectively [8]. ─ Prediction with calculated parameters. - - - Prediction with tabulated 

parameters. 
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Figure 4. Isobutene (1) and ETBE (2) equilibrium. ▲ and ● equilibrium data for liquid and 

vapor phase, respectively [9]. ─ Prediction with calculated parameters. - - - Prediction with 

tabulated parameters. 

Figure 5. Isobutene (1) and ETBE (2) equilibrium. ▪ and ♦ equilibrium data for liquid and 

vapor phase, respectively [10]. ─ Prediction with calculated parameters. - - - Prediction with 

tabulated parameters. 
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Figure 6. Butene(1) and Ethanol (2) equilibrium. ▪ and ♦ equilibrium data for liquid and vapor 

phase, respectively [10]. ─ Prediction with calculated parameters. - - - Prediction with tabulated 

parameters. 

Figure 7. Isobutene (1) and Ethanol (2) equilibrium. ▲ and ● equilibrium data for liquid and 

vapor phase, respectively [11]. ─ Prediction with calculated parameters. - - - Prediction with 

tabulated parameters. 

Figures 1 to 7 show the good agreement between the proposed thermodynamic 
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with tabulated and estimated parameters and how the new parameters better predict 

the phase equilibrium of the binaries present in the reactive column. 

Errors were more noticeable for the system isobutene-ETBE (Figures 4 and 5). 

Highest error is about 5.6 % which remains well below experimental error. 

From Figures 6 and 7 it can be seen that experimental data for lower liquid compo-

sitions in the system isobutene-ethanol are unavailable, although the prediction for 

available compositions is very accurate.  

The full set of equations representing the reactive distillation system can now be 

solved, within a nonlinear programming environment such as GAMS, minimizing the 

total costs, in order to obtain a feasible design at the minimum cost.  

5 Conclusions 

In this work, a full set of interaction parameters for a quaternary system ETBE-

Ethanol-Isobutene-Butane is found by posing a nonlinear programming problem that 

minimizes the residuals. The model of the column is then implemented in GAMS, 

including rigorous thermodynamic model and hydraulic constraints. The main contri-

bution of this work is the prediction of an important set of parameters required for 

simulating this system, which were unavailable in literature. 

Reactive distillation poses an important challenge for process control [12], and 

ETBE production using these systems still constitutes an application yet not thorough-

ly explored [13]. These aspects will be addressed in future work, within a dynamic 

optimization environment. 

 

6 Nomenclature 

Subindexis 

i,k: molecule 

j,m,n: group 

ne= 1..7: number of set of experimental data  

d: number of experimental data in each set 

UNIFAC 

γne,d,i: activity coefficient 

γ
C

ne,d,i: combinatorial contribution 

γ
R

ne,d,i: residual contribution 

υ
i
j: number of group of kind j in molecule i 

Гne,d,j: residual activity coefficient of group j in a solution 

Г
i
ne,d,j: residual activity coefficient of group j in a reference solution containing  

 only molecules of type i 

Φne,d,i: molecular volume fraction 

Θne,d,i: molecular surface area fraction 

Xne,d,i: mol fraction of molecule i 
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qi: van der Waals surface area 

ri: van der Waals volume 

Qj: group surface area parameter 

Rj: group volume parameter 

Θne,d,m: group surface area fraction 

Xne,d,m: group fraction 

Ψne,d,m,j: parameter 

an,m: group interaction parameter 

Tne: temperature of set of experimental data ne 

Parameters estimation  

P
CALC

ne,d: calculated pressure for datum d, in set of experimental data ne 

P
V

ne,i: vapor pressure of molecule i at Tne 

P
EXP

ne,d: experimental pressure for datum d, in set of experimental data ne 

σP: standard percent relative deviation in pressure P 

σy: standard percent deviation in mole fraction y1 

Nne: number of points in set of experimental data ne 
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